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dence rate and treatment function is proposed and studied. The exis-
tence of all feasible equilibrium points is discussed. The local stability
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using Lyapunov method. The local bifurcation near the disease free equi-
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1. Introduction

The mathematical models, which describe the dynamics of human in-
fectious diseases, have played an important role in the field of epidemiology.
Researchers have proposed many epidemic models to grasp the mechanism
of disease transmission, see [1-7].In the mathematical modeling of epidemic
transmission, there are several factors that substantially affect the dynamical
behavior of the models. Incidence rate functions are seen as a major factor
in producing the rich dynamics of epidemic models. There are many types of
incidence rate functions, such as nonlinear incidence rate, standard incidence
rate, and saturated incidence rate. Later on, there are many studies that have
demonstrated the effect of nonlinear incidence rate, which is one of the key fac-
tors that induce periodic oscillations, on the epidemic models,see [8-13]. On the
other hand, it�s observed that in the classical epidemic models, the treatment
function is an important factor to decrease the spread of the epidemiological
diseases. Indeed most of the treatment functions of the infected individuals
are considered to be proportional to the number of the infected individuals.
However, Wang and Ruan[14] introduced a constant treatment function, while
a piecewise linear treatment function was considered in [15].Moreover, Eck-
albar and Eckalbar [16] constructed an SIR epidemic model with a quadratic
treatment function.Lately, saturated treatment function has been widely used
in many epidemic models. In particular, Zhang and Liu [17] took a continuous
and differentiable saturated treatment function, which is an extension to that
used in[15].

It is well known that, the basic reproduction number (R0) plays an impor-
tant role in determine the stability of disease free equilibrium point and hence
control the disease transmission. In fact, it is scientifically known that, a clas-
sical necessary condition for disease eradication is that the basic reproductive
number satisfies that R0 < 1 see [18]. However, the existence of some types of
treatment functions in an epidemic models may cause the occurrence of some
types of bifurcations, especially backward bifurcation [15].The occurrence of
backward bifurcation means that an endemic equilibrium point may also exists
even R0 < 1, which in turn leads to occurrence of bi-stable in the system and
hence losing the control of disease when R0 < 1. Many epidemic models were
interested in study the existence of backward bifurcation may be found in the
literature, for both generic and specific diseases, see[17 − 20]. The detection
of the occurrence of backward bifurcation is done through the center manifold
theory as its basis [21− 22].

In this paper, an SIS epidemic model involving saturated incidence rate
and treatment function is proposed and studied. This paper is organized as
follows: in section (2) the hypotheses, which adopted to formulate the model is
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presented.Section (3) deals with the stability analysis of the model.However sec-
tion (4) studied the local bifurcation around disease free equilibrium point and
Hopf bifurcation around the endemic equilibrium point. Moreover section (5)

includes the backward and forward bifurcation analyses.Section (6)introduced
a numerical solution of system (2.1) for a hypothetical set of parameters and
discussed the effects of varying these parameters on the dynamical behavior.
Finally section (7) included the main conclusion and discussion.

2. Model Formulation

An epidemic model with SIS type of disease is proposed and studied.
Accordingly the total population is divided into two compartments namely
S(t)and I(t), where S(t) and I(t) represent the number of susceptible and in-
fected individuals at time t, respectively. In order to formulate the model
mathematically the following hypotheses are adopted:

(1) There is no vertical infection, that is mean all the newborn individuals
are susceptible and exist within the recruitment rate of the population
that given by A > 0.

(2) The disease is transmitted by contact between the susceptible and in-
fected individuals with probability rate λ ∈ (0, 1), according to the
saturated incidence rate cSI

(k+I) that given in [23]. Here c > 0 represents
the ratio of the contact rate to the saturation factor of the inhibitory
effect, while 1

k > 0 is stand for the saturation factor that measure the
inhibitory effect of the disease due to the crowding of infected individ-
uals.

(3) The disease is disappear and the infected individuals become suscepti-
ble again with two strategies. The first is the natural recovery with a
recovery rate ϵ > 0 of the infected individuals and the second is due to
treatment with treatment function aI

(b+I) , in which a > 0 represents the
ratio of the maximum medical resource supplied per unit time to the
saturation factor of the delayed in treatment, while 1

b > 0 is stand for
the saturation factor that measure the effect of the delay in treatment
for the infected individuals.

(4) The individuals in both compartments decay due to the natural death
rate α > 0. Moreover the existence of disease may cause death with
the rate µ > 0.

According to the above hypotheses the dynamics of SIS epidemic model
with saturated incidence rate and treatment function can be represented by
the following set of nonlinear differential equations:{

Ṡ = A− αs− λ cSI
(k+I) + ϵI + aI

(b+I)

İ = λc SI
(k+I) − (α+ ϵ+ µ)I − aI

(b+I)

(2.1)
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with the initial condition given by S(0) > 0 and I(0) ≥ 0. Further in the
following theorem the feasible region of model (1) is established.

Theorem 2.1. The region Ω = {(S, I) : S > 0, I ≥ 0, 0 < S + I ≤ A
α } is

positively invariant for model (2.1).

Proof. Let β = λc I
(k+I) , then from the first equation of (2.1) it is observed:

Ṡ = A− αS − βS + ϵ ≥ I +
aI

(b+ I)
≥ −(α+ β)S

Hence we get that S(t) ≥ S(0)e−(α+β)t > 0 Similarly the positivity of I(t) ≥ 0,
with equality occurs only when I(0) = 0, can be proved easily using the second
equation of (2.1).
Now since N(t) = S(t) + I(t), then direct computation gives dN

dt < A − αN

Consequently, for N(0) = N0, we get that N(t) ≤ A
α − [ 1α (A − αN0)]e

−αt

Obviously as t → ∞ then for any initial value in Ω, the population size N

satisfy hat 0 < N < A
α . Thus all the solutions sets of (2.1) enter the region Ω

and remain in it for all t > 0 .Hence the region Ω is positively invariant. □

3. Stability analysis of model (2.1)

In this section, all feasible equilibrium points along with the reproduc-
tion number are determined and then the local stability of each of them is
discussed. Clearly the so called disease free equilibrium point that given by
E0 = (Aα , 0) always exists for system (2.1). On the other hand the basic re-
production number R0 , which is representing the mean number of secondary
infections caused by a single infective introduced into a susceptible population,
can be determined using the next generation matrix, see [ 18 ], for system (2.1)
at E0 . It is well known that R0 is a threshold value that governing the quali-
tative dynamics of system (2.1).

Let x = (I, S)
T then the system (2.1) can be written as

dx

dt
= F(x)− V(x)

where

F(x) =

 λc SI
(k+I)

0

 and V(x) =

(
(α+ ϵ+ µ+ a

b+I )I

αs+ λc SI
k+I − ϵI − aI

b+I −A

)

Hence after some calculations and using E0, we obtain

F = (λc
A

αk
) , and V = (α+ ϵ+ µ+

a

b
)
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Therefore, the reproduction number of system (2.1) is the spectral radius
of the next generation matrix that given by FV −1, which can be written as

R0 = ρ(FV −1) = λc
A

αk(α+ ϵ+ µ+ a
b )

(3.1)

Further the endemic equilibrium point of system (2.1) can be computed
by solving the following algebraic system:

A− αs− λc
SI

k + I
+ ϵI +

aI

b+ I
= 0

λc
SI

k + I
− (α+ ϵ+ µ)I − aI

b+ I
= 0

From the second equation we obtain that:

S(I) =
[(α+ ϵ+ µ)(b+ I) + a](k + I)

λc(b+ I)
(3.2)

Substituting S(I) in the first equation gives the following polynomials:-

a0I
2 + a1I + a2 = 0 (3.3)

where

a0 = −α2 − αϵ− αµ− αλc− µλc < 0

a1 = Aλc− (α+ ϵ+ µ)(αb+ αk + λcb)− αa+ ϵλc

a2 = αkb(α+ ϵ+ µ+
a

b
)(R0 − 1)

Now solving eq. (3.3) for I and substituting their roots in eq. (3.2) gives
the endemic point or points. Clearly the number of positive roots of eq. (3.3)
depends on the values of R0, a1 and ∆ = a21 − 4a0a2, and can be summarized
in the following theorem. Recall that

∆ = a21 − 4a0a2 = 0 ⇔ R0 = 1 +
(a21)

(4a0(αkb(α+ ϵ+ µ+ a
b )))

(≡ Rc
0) (3.4)

Moreover ∆ < 0 ⇔ R0 < Rc
0, ;∆ > 0 ⇔ R0 > Rc

0.

Theorem 3.1. System (2.1) has
(1) Unique endemic equilibrium point whenever R0 > 1 .
(2) Unique endemic equilibrium point when R0 = 1 and a1 > 0 .
(3) An endemic equilibrium point of multiplicity two when R0 = Rc

0 , a1 > 0

.
(4) Two endemic equilibrium points, when Rc

0 < R0 < 1 and a1 > 0.
(5) No endemic equilibrium point whenever R0 < Rc

0 and a1 < 0 or R0 < 1

and a1 < 0 .

Proof. Straightforward using Descartes rule of sign and above discussion. □
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Note that Theorem (3.1) tell us that R0 = 1 is a critical value at which
the number of equilibrium point of system (2.1) changed. In fact R0 = 1

represents a bifurcation value for the stability of the disease free equilibrium
point as shown in the following theorem.

Theorem 3.2. .The disease free equilibrium point is locally asymptotically
stable point of system (2.1) for R0 < 1 and unstable for R0 > 1

Proof. The Jacobian matrix of system (2.1) at E0 is given by:

J(E0) =

[
−α −λcA

αk+ϵ+ a
b

0 λcA
αk − (α+ ϵ+ µ+ a

b )

]
(3.5)

Thus the eigenvalues of J(E0) are given by:

γ1 = −α and γ2 = (α+ ϵ+ µ+
a

b
)(R0 − 1)

Therefore all the eigenvalues are negative and hence E0 is locally asymptotically
stable provided that R0 < 1, while its unstable saddle point for R0 > 1 and
the proof is complete. □

Now the stability of the endemic equilibrium point is discussed in the
following two theorems according to their existence conditions. Further, it is
easy to verify that the Jacobian matrix at the endemic equilibrium point, say
E, is given by

J(E) =

 −α− λc I∗

k+I∗ − k[(α+ϵ+µ)(b+I∗)+a]
(k+I∗)(b+I∗) + ϵ+ ab

(b+I∗)2

λc I∗

k+I∗
k[(α+ϵ+µ)(b+I∗)+a]

(k+I∗)(b+I∗) + (α+ ϵ+ µ)− ab
(b+I∗)2

 (3.6)

Theorem 3.3. Suppose there are two endemic equilibrium points, say Ei

,i = 1, 2 .Then Ei is locally asymptotically stable if the following conditions
hold

b ≥ k (3.7a)

a

b
≥ αk

λcA
(3.7b)

Proof. From theorem (3.1) we have that

Rc
0 ≤ R0 < 1 and a1 > 0

Hence straightforward computation gives that

Tr(J(Ei)) = −(2α+ λc+ ϵ+ µ)
I∗

k + I∗
− a

b+ I∗

[
b

b+ I∗
− k

k + I∗

]
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And

Det(J(Ei)) = − (α2k2)

(k + I∗)λcA
(R0 − 1) +

αk

k + I∗

[
a

b
− αk

λcA

]
+

αa

b+ I∗

[
b

b+ I∗
− k

(k + I∗)

]
+ α(α+ ϵ+ µ)

+ λc
I∗

(k + I∗)
[α+ µ]

Consequently, if the above sufficient conditions (3.7a) − (3.7b) hold we
obtain Tr(J(Ei)) < 0 and Det(J(Ei)) > 0 Hence J(Ei) has two eigenvalues
with negative real parts, Therefore Ei is locally asymptotically stable and the
proof is complete. □

Theorem 3.4. .Suppose that R0 > 1, then the unique endemic equilibrium
point E∗ is locally asymptotically stable if the following condition holds:

k[(α+ ϵ+ µ)(b+ I∗) + a]

(k + I∗)(b+ I∗)
< (α+ ϵ+ µ) +

ab

(b+ I∗)2
(3.8)

Proof. From eq.(3.5) it is easy to verify that the trace and determinant of the
Jacobian matrix at the endemic point can be rewritten as

Tr.(J(E∗)) = −α− λc
I∗

(k + I∗)
+

(k[(α+ ϵ+ µ)(b+ I∗) + a])

(k + I∗)(b+ I∗)
− (α+ ϵ+ µ)

− ab

(b+ I∗)2

Det.(J(E∗)) = − (αk[(α+ ϵ+ µ)(b+ I∗) + a])

(k + I∗)(b+ I∗)
+ α(α+ ϵ+ µ) +

αab

(b+ I∗)
2

+
(λcI∗)

(k + I∗)
(α+ µ)

Consequently, condition (3.7) guarantee�s that Tr.(J(E∗)) < 0 and (J(E∗)) >

0 Hence J(E∗) has two eigenvalues with negative real parts. Therefore E∗ is
locally asymptotically stable and the proof is complete. Now the global stabil-
ity of system (2.1) is investigated as shown in the following theorems. Recall
that according to theorem (2.1) the region
Ω = {(S, I) : S > 0, I ≥ 0, 0 < S + I ≤ A

α } is positively invariant for system
(2.1). Hence we obtain that S(t) ≤ A

α and I(t) ≤ A
α . □

Theorem 3.5. Assume that the disease free equilibrium point E0 is locally
asymptotically stable and let

R̄0 =
λcA

αk
(
α+ ϵ+ µ+ a

(b+A
α )

) < 1 (3.9)

Then E0 is a globally asymptotically stable.
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Proof. Clearly if R̄0 < 1 then R0 < 1 .Consider the following Lyapunov func-
tion V1(S, I) = I, then V1(S, I) = 0 if and only if I = 0 and V1(S, I) > 0

otherwise. Also

V́1 = [λc
S

(k + I)
− (α+ ϵ+ µ)− a

(b+ I)
]I ≤ [λc

S

k
− (α+ ϵ+ µ+

a

(b+ I)
)]

Since S(t) ≤ A
α and I(t) ≤ A

α . Then V́1 ≤ [λcAα − (α+ ϵ+ µ+ a
(b+A

α )
)]I

Clearly R̄0 < 1 guarantee�s that V́1 = 0 if and only if I = 0 and V́1 < 0

otherwise. Hence E0 is stable point. Since the largest compact invariant set in
Ω with V́1 = 0 is the singleton set E0. Thus by La Salle’s Invariance Principle
every solution initiate in the region Ω approaches to E0. Therefore {E0} is a
globally asymptotically stable point. □

Theorem 3.6. Assume that the unique endemic equilibrium point is locally
asymptotically stable and let the following condition holds

(q12)
2 < 4q11q22 (3.10)

where qij are given in the proof, then the endemic equilibrium point is a globally
asymptotically

Proof. Consider the function V2 = (S−S∗)2

2 + (I−I∗)2

2 Clearly, V2 : R2 → R

with V2(S
∗, I∗) = 0 and V2(S, I) > 0; ∀(S, I) ∈ Ω. Then straightforward

computation show that:

V ′
2 =−

[
α+

λcI

(k + I)

]
(S − S∗)2

+

[
ϵ+

ab

(b+ I)(b+ I∗)
+

λcI

(k + I)
− (λckS∗)

(k + I)(k + I∗)

]
(S − S∗)(I − I∗)

−
[
(α+ ϵ+ µ) +

ab

(b+ I)(b+ I∗)
− (λckS∗)

(k + I)(k + I∗)

]
(I − I∗)2

which gives
V ′
2 = −q11(S − S∗)2 + q12(S − S∗)(I − I∗)− q22(I − I∗)2

here:

q11 =

[
α+

λcI

(k + I)

]
q12 =

[
ϵ+

ab

(b+ I)(b+ I∗)
+

λcI

(k + I)
− λckS∗

(k + I)(k + I∗)

]
q22 =

[
(α+ ϵ+ µ) +

ab

(b+ I)(b+ I∗)
− (λckS∗)

(k + I)(k + I∗)

]
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Now its easy to verify that condition (3.8) guarantee�s that q22 > 0, while
condition (3.10) gives:

V ′
2 < −[

√
q11(S − S∗)−√

q22(I − I∗)]2

Hence V ′
2 = 0 if and only if (S, I) = (S∗, I∗) and V ′

2 < 0 otherwise thus the
endemic equilibrium is a globally asymptotically stable. □

4. Local bifurcation analysis

In this section, the local bifurcation analysis of system (2.1) is investi-
gated as shown in the following theorems. Since the Jacobian matrix of system
(2.1) at (S, I) can be rewritten as

Df =

 −α− λc I
k+I − λcS k

(k+I)2 + ϵ+ ab
(b+I)2

λc I
k+I λcS k

(k+I)2 − (α+ ϵ+ µ)− ab
(b+I)2

 (4.1a)

here f = (f1, f2)
T with f1 and f2 are the interaction function in system (2.1),

Then for any vector U = (u1, u2)
T , it is easy to verify that:

D2f.(U,U) =

 −2λc k
(k+I)2u1u2 + 2λc k

(k+I)3u2
2 − ab

(b+I)3u2
2

2λc k
(k+I)2u1u2 − 2λc k

(k+I)3u2
2 + ab

(b+I)3u2
2

 (4.1b)

D3f.(U,U,U) =

 4λc k
(k+I)3u1u2

2 − 6λc kS
(k+I)4u2

3 − 6ab
(b+I)4u2

3

−4λc k
(k+I)3u1u2

2 + 6λc kS
(k+I)4u2

3 + 6ab
(b+I)4u2

3

 (4.1c)

Moreover, it is well known that the necessary but not sufficient condition for
bifurcation to occur is a non-hyperbolic property of the equilibrium point.

Theorem 4.1. The system (2.1) undergoes a transcritical bifurcation near the
disease free equilibrium point, but saddle node bifurcations can not occur as
the parameter λ passes through the bifurcation value

λ∗ =
αk

cA
(α+ ϵ+ µ+

a

b
)

provided that the following condition holds

(α+ ϵ+ µ+
a

b
)(
α+ µ

α
+

1

k
) ̸= a

b2
(4.2a)

Otherwise, the system (2.1) undergoes a pitchfork bifurcation if the following
condition holds

2

Ak2
(α+ ϵ+ µ+

a

b
[(α+ µ)− (α+ µ)2

α
+ 3A] ̸= 3a

b3
(4.2b)
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Proof. .According to the Jacobian matrix of system (2.1) at E0 that given in
(3.5), it�s clear that as the parameter λ passes through the value of λ∗ then
R0 = 1 and the Jacobian matrix becomes:

Df(E0, λ
∗) =

(
−λ −(α+ µ)

0 0

)
Therefore the eigenvalues of Df(E0, λ

∗) are λ1 = −α ,λ2 = 0 and hence E0 be-
comes a non-hyperbolic point when R0 = 1. Assume that U = (u1, u2)

T is the
eigenvector associated with the zero eigenvalue in Df(E0, λ

∗) then we obtain
that u1 = −α+µ

α and u2 = 1. Assume that W = (w1, w2)
T be the eigenvector

associated with the zero eigenvalue for [Df(E0, λ
∗)]T , then we obtain w1 = 0

andw2 = 1 Now since

∂f

∂λ
= fλ =

 ∂f1
∂λ

∂f2
∂λ

 =

 −cSI
k+I

cSI
k+I


Then

 ∂f1
∂λ

∂f2
∂λ

|(E0, λ
∗) =

 0

0


Therefore

WT .
∂f

∂λ
(E0, λ

∗) = zero

.
Further

Dfλ =

 − cI
k+I − ckS

(k+I)2

cI
k+I

ckS
(k+I)2


Then

Dfλ (E0, λ
∗) =

 0 − cA
αk

0 cA
αk



Therefore WT [Dfλ(E0, λ
∗)U ] = cA

αk ̸= 0, hence saddle node bifurcation
cannot occur.
Now by using (4.1b) with the eigenvectors U and W at the (E0, λ

∗) we obtain
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that

WT [D2f(E0, λ
∗)(U,U)] = −2(α+ ε+ µ+

a

b
)(
α+ µ

α
+

1

k
) +

2a

b2

Clearly condition (4.2a) guarantees that WT [D2f(E0, λ
∗)(U,U) ̸= 0 and hence

transcritical bifurcation occurs. However, if the condition (4.2a) is violate while
condition (4.2b) holds then by using (4.1c) with the eigenvectors U and W , it�s
obtained that

WT [D3f(E0, λ
∗)(U,U,U)] =

2

(Ak2)
(α+ ε+ µ+

a

b
)[(α+ µ)− (α+ µ)2

α
+ 3A]

− 6
a

b3
̸= 0

Hence pitchfork bifurcation occurs and the proof is complete. □

Recall that, in order to system (2.1) undergoes a Hopf bifurcation
around the endemic equilibrium point, the Jacobian matrix given by (3.6)
should have complex conjugate eigenvalues β1(r)iβ2(r) such that β1(r

∗) = 0

and dβ1)
dr |(r = r∗) ̸= 0 where r is a general parameter, see [24]. This is equiv-

alent to that the Jacobin matrix given by (3.6) have Tr.(r∗) = 0, Det.(r) > 0

for all values of r and (Tr.(.))
dr |(r = r∗) ̸= 0, see [25].

Theorem 4.2. :Suppose that R0 > 1 with

α(2α+ ϵ+ µ) +
αab

(b+ I∗)2
<

αk[(α+ ϵ+ µ)(b+ I∗) + a]

(k + I∗)(b+ I∗)

< α(α+ ϵ+ µ) +
αab

(b+ I∗)2
+

(λcI∗)

(k + I∗)
(α+ µ)

)
. (4.3)

Then system (2.1) undergoes a Hopf bifurcation around the unique endemic
point when the parameter λ passes through the parameter

λ∗ =
k[(α+ ϵ+ µ)(b+ I∗) + a](b+ I∗)− [(2α+ ϵ+ µ)(b+ I∗)2 + ab](k + I∗)

cI∗(b+ I∗)2

(4.4)

Proof. Recall that, it is easy to verify that under the condition (4.3) the de-
terminant of the Jacobian matrix at the endemic point that given in theorem
(3.4) satisfy the following: Det.(J) > 0 while the trace can be rewritten as

Tr.(J) =
1

(k + I∗)(b+ I∗)2

(
k[(α+ ϵ+ µ)(b+ I∗) + a](b+ I∗)

− [(2α+ ϵ+ µ)(b+ I∗)2 + ab](k + I∗)− λcIλ∗(b+ I∗)2
)
.
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Consequently, for λ = λ∗ we have Tr(J, λ∗) = 0.However

(dTr(J))

(dλ∗)
|(λ = λ∗) = − (cI∗)

(k + I∗)
̸= 0

Therefore all the necessary and sufficient conditions for occurrence of Hopf
bifurcation are satisfied and hence the proof is complete. □

5. Backward and Forward Bifurcation

It is well known that the condition R0 < 1 is a necessary and sufficient
condition to eliminate the disease when the bifurcation is forward, while it is
not enough when the bifurcation is backward. In fact, the backward bifurca-
tion scenario involves the existence of a subcritical transcritical bifurcation at
R0 = 1 and of a saddle-node bifurcation at R0 < 1, see [19]. Consequently, in
the following we detect the type of the bifurcation in system (2.1) weather it�s
backward or forward by applying the theorem for backward and forward bifur-
cation that obtained in[26]and isbased on the center manifold theory. Consider
the dynamical system with a parameter ϕ:

dx

dt
= f(x, ϕ) (5.1)

where f : Rn ×R −→ R and f ∈ C2(Rn ×R). Assume (without loss of gener-
ality) that the origin is an equilibrium point of system (5.1) for all values of ϕ.
Moreover, suppose that the Jacobain matrix of system (5.1) at (0, ϕ) = (0, 0)

has a simple zero eigenvalue with other eigenvalues have negative real parts.
Let W be a nonnegative right eigenvector while V is a nonnegative left eigen-
vector correspond the zero eigenvalue and let the coefficients of the normal form
that representing the system dynamics on the central manifold Ć = C(b̂ϕ+ â

2C)

, which defined in [26] as

â =

n∑
(k,i,j=1)

vkwiwj
(∂2fk)

(∂xi∂xj)
(0, 0); b̂ =

n∑
(k,i,j=1)

vkwi
(∂2fk)

(∂xi∂ϕ)
(0, 0) (5.2)

where fk, wk and vk represent the kth component of f,W and V respectively.
Then according to [26], if â < 0 and b̂ > 0 system (5.1) has a forward bifurca-
tion, while it has a backward bifurcation if a â > 0 and b̂ > 0.

Now for system (2.1) the following theorem specify the type of bifurcation
whether its backward or forward, which may occurs near the disease free point,
and their sufficient conditions.

Theorem 5.1. Assume that R0 = 1, then system (2.1) exhibits a backward
bifurcation near the disease free equilibrium point if the following condition



Stability and bifurcation of an SIS epidemic model · · · 141

holds.
λ∗c

αk
(α+ µ+

A

ck
) <

a

b2
(5.3)

On the other hand if
λ∗c

αk
(α+ µ+

A

ck
) >

a

b2
(5.4)

here λ∗ is given in the proof . Then system (2.1) has a forward bifurcation.

Proof. According to Theorem 4.1 , R0 = 1 is equivalent to λ∗ = αk
cA (α + ε +

µ+ a
b ). Moreover the Jacobian matrix Df(E0, λ

∗) has the following eigenvalues
λ1 = −α, λ2 = 0.

Let W = (w1, w2)
T be the right eigenvector associated with the zero eigen-

value then we obtain that W = [−α+µ
α , 1]T . However the left eigenvector

V = (v1, v2), which satisfy that vw = 1, is determined as V = [0, 1]. Fur-
ther, since

∂2f1
∂S∂I

=
∂2f1
∂I∂S

=
−λc

k
;

∂2f1
∂I2

= 2
λcA

k2α
− 2

a

b2

∂2f1
∂I∂λ

=
∂2f1
∂λ∂I

= −cA

kα
;

(∂2f2)

∂I2
= −2

λcA

(k2α)
+ 2

a

b2

∂2f2
∂S∂I

=
∂2f2
∂I∂S

=
λc

k
;

∂2f2
∂I∂λ

=
∂2f2
∂λ∂I

=
cA

kα

While all the other second order partial derivatives are zero. Thus by substi-
tuting these derivatives in (5.2) and evaluated at (E0, λ

∗) we get:

â = − 2
λ∗c

kα
(α+ µ+

A

k
) + 2

a

b2

b̂ =
cA

kα
> 0

Since the value of b̂ is always positive, therefore the value of â will determine
the type of the bifurcation whether forward or backward. Thus under condition
(5.3) system (2.1) exhibits a backward bifurcation, while system (2.1) exhibits
a forward bifurcation under condition (5.4). □

6. Numerical simulation

In this section we aim to verify our obtained theoretical results and
specify the control set of parameters. Accordingly, system (2.1) is solved nu-
merically for the following set of hypothetically feasible set of parameters using
six-order Runge-Kuttamethod along with predictor-corrector method and then
draw the resulting trajectories with the help of Matlab.

A = 20, α = 0.1, λ = 0.5, ϵ = 0.1, µ = 0.1, a = 0.08, b = 10, k = 10, c = 0.9

(6.1)
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Obviously, for the data (6.1), system (2.1) approaches asymptotically to the
endemic equilibrium point E1 = (55.13, 72.43) as shown in Figure (1). However
for the data (6.1) with λ = 0.001, its observed that system (2.1) approaches
asymptotically to the disease free equilibrium point E0 = (200, 0) as shown in
Figure (2). Straightforward computation shows that for the data used in Figure
(1) and Figure (2) the reproduction number is determine as R0 = 29.22 > 1

and R0 = 0.0584 < 1 respectively, which confirm our obtained analytical results
regarding to stability conditions and the existence of bifurcation.

Figure 1. Trajectory of system (2.1) as a function of time
for data (6.1), which approaches asymptotically to endemic
equilibrium point.
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Figure 2. Trajectory of system (2.1) as a function of time
for data (6.1), which approaches asymptotically to endemic
equilibrium point.

Figure 3. Trajectory of system (2.1) as a function of time for
data (6.1) with b = 0.0001, which approaches asymptotically
to the endemic point E1 = (55.15, 72.42).

Further analysis to the effect of other parameters on the dynamic of system
(2.1) have been done and the results are summarized in the form of table below.
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Parameter R0 behavior

c > 0.0308 R0 > 1 E1isasymptoticallystable

c < 0.0308 R0 < 1 E0isasymptoticallystable

A > 0.6844 R0 > 1 E1isasymptoticallystable

A < 0.6844 R0 < 1 E0isasymptoticallystable

K > 292.207 R0 < 1 E0isasymptoticallystable

K < 292.20 R0 > 1 E1isasymptoticallystable

ϵ R0 > 1 E1isasymptoticallystable

µ R0 > 1 E1isasymptoticallystable

a R0 > 1 E1isasymptoticallystable

Table 1. Dynamical behavior of system (2.1) for the data
(6.1) with varying a specific parameter

7. Discussion

In this research paper, an epidemiological model of SIS type of disease
is proposed and studied. It is assumed that the disease is transmitted accord-
ing to the saturated incidence rate while the infected individuals recovered
according to saturated treatment function. Local and global stability of the
proposed system have been done using basic reproduction number and suitable
Lyapunov functions. The sufficient conditions for occurrence of different types
of bifurcations have been established. It is observed that, system (2.1) has al-
ways a disease free equilibrium point, while the existence and the number of the
endemic equilibrium points depend on the value of basic reproduction number.
On contrast to classical epidemic models, the system is rich in his dynam-
ics due to existence of nonlinear term represented by the saturated treatment
function. In fact the system approaches to an endemic equilibrium point under
some conditions even when R0 < 1. This is indicate to occurrence of backward
bifurcation. Also the system undergoes other types of bifurcations including
transcritical, pitchfork and Hopf, under certain conditions.Finally numerical
simulation of system (2.1) is carried out using feasible hypothetical set of data
to confirm our analytical results and specify the control set of parameters. It�s
observed that, the system undergoes different types of bifurcation when some
parameters are varying, which confirm our obtained analytical results. More-
over, although the system don�t have periodic dynamics for the data given by
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(6.1), system (2.1) still has a possibility to have it for other set of data due to
existence of Hopf bifurcation analytically.
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